Lecture 2: Decomposition Matrices and Projective Indecomposable Characters

William Chuang, Based on Prof. Lux' Lectures and Navarro's Book

March 27, 2025

1. Overview and Motivation

In modular representation theory, irreducible complex characters $\chi \in Irr(G)$ reduce modulo p to (possibly reducible) Brauer characters $\phi \in IBr(G)$. The relationship between these characters is encoded in the *decomposition matrix*, a central object in the theory.

2. Decomposition Matrix

Definition 1 (Decomposition Matrix). Let G be a finite group and p a prime dividing |G|. The decomposition matrix $D = (d_{\chi\phi})$ records the multiplicities with which each Brauer character $\phi \in \operatorname{IBr}(G)$ appears in the reduction modulo p of each ordinary irreducible character $\chi \in \operatorname{Irr}(G)$:

$$\chi^{\circ} = \sum_{\phi \in \mathrm{IBr}(G)} d_{\chi\phi} \cdot \phi.$$

Here, χ° denotes the reduction of χ modulo p, and the coefficients $d_{\chi\phi}$ are non-negative integers.

3. The Space of Class Functions Vanishing on *p*-Singular Elements

Definition 2. Let VCF(G) be the \mathbb{C} -vector space of class functions $f : G \to \mathbb{C}$ such that f(x) = 0whenever $x \in G$ is p-singular (i.e., the order of x is divisible by p).

The dimension of VCF(G) equals the number of *p*-regular conjugacy classes of *G*.

Theorem 1 (Navarro, Theorem 2.13). The set IPr(G) of projective indecomposable characters forms a \mathbb{Z} -basis for VCF(G).

4. Inner Product on *p*-Regular Classes

Definition 3. The inner product $\langle f, g \rangle_{p'}$ for class functions f, g on G is defined by:

$$\langle f,g \rangle_{p'} = \frac{1}{|G|} \sum_{\substack{x \in G \\ x \ p-regular}} f(x)\overline{g(x)} |C_G(x)|.$$

This inner product restricts the summation to *p*-regular elements only.

Theorem 2. With respect to $\langle -, - \rangle_{p'}$, the sets IBr(G) and IPr(G) form dual bases:

$$\langle \phi, \Phi \rangle_{p'} = \delta_{\phi, \Phi}$$

This implies any $f \in VCF(G)$ can be expressed as:

$$f = \sum_{\phi \in \mathrm{IBr}(G)} \langle f, \phi \rangle_{p'} \cdot \Phi_{\phi},$$

where $\Phi_{\phi} \in \operatorname{IPr}(G)$ is the projective indecomposable character associated with ϕ .

5. Matrix Formulation

Let:

- Φ : the character table of IPr(G),
- Ψ : the character table of $\operatorname{IBr}(G)$,
- C: the change-of-basis matrix from IBr(G) to Irr(G),
- M: the decomposition matrix $(d_{\chi\phi})$.

Then:

$$\Phi = C \cdot \Psi$$
, or equivalently, $C = \Phi \cdot \Psi^{-1}$.

6. Dickson's Lemma (Navarro Lemma 2.14)

Lemma 1 (Dickson's Lemma). Let $\phi \in IBr(G)$ and let $P \leq G$ be a Sylow p-subgroup. Then the restriction of ϕ to P satisfies:

$$\phi|_P = \frac{\phi(1)}{|P|} \sum_{x \in P} \tau(x),$$

where τ is a generalized character of P.

This lemma expresses the behavior of Brauer characters upon restriction to *p*-subgroups.

7. Summary

- The decomposition matrix connects ordinary and Brauer characters.
- The space VCF(G) has a basis given by projective indecomposable characters.
- The inner product on p-regular classes allows us to interpret IBr(G) and IPr(G) as dual bases.
- Dickson's Lemma gives a description of how Brauer characters restrict to *p*-subgroups.

Next Lecture (Lecture 3 Preview)

In Lecture 3, we will:

- Investigate the structure and properties of decomposition matrices,
- Introduce block theory and defect groups,
- Analyze examples, especially from symmetric groups and abelian defect blocks.